k cal - significado y definición. Qué es k cal
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es k cal - definición

INTENSIVE QUANTITY, HEAT CAPACITY PER MASS
Specific heat; Specific Heat Capacity; Massic heat; J/kg/K; J/(kg x K); Cal/g/K; Cal/(g x K); Massic heat capacity

Cal looker         
CUSTOM CAR TREND
'Cal Looker'; Cal Look
A Cal looker (California looker) is any air-cooled Volkswagen (most often the Type 1) modified in fashion originating in Orange County, California in the late 1960s.
Rafael Cal         
MEXICAN SWIMMER
Rafaél Cal
Rafael Cal y Mayor (born 12 November 1949 in Mexico City) is a Mexican swimmer who competed in the 1968 Summer Olympics.
Anita M. Cal         
  • thumb
AMERICAN FILM DIRECTOR AND SCREENWRITER
Anita Cal
Anita M. Cal (born October 14, 1966) is an American author, TV Writer, film producer, and international speaker IMDb Retrieved 2016-5-9 best known for writing on the TBS family comedies, Tyler Perry's House of Payne and Tyler Perry's Meet the Browns.

Wikipedia

Specific heat capacity

In thermodynamics, the specific heat capacity (symbol c) of a substance is the heat capacity of a sample of the substance divided by the mass of the sample, also sometimes referred to as massic heat capacity. Informally, it is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. The SI unit of specific heat capacity is joule per kelvin per kilogram, J⋅kg−1⋅K−1. For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg−1⋅K−1.

Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common substances, about 4184 J⋅kg−1⋅K−1 at 20 °C; but that of ice, just below 0 °C, is only 2093 J⋅kg−1⋅K−1. The specific heat capacities of iron, granite, and hydrogen gas are about 449 J⋅kg−1⋅K−1, 790 J⋅kg−1⋅K−1, and 14300 J⋅kg−1⋅K−1, respectively. While the substance is undergoing a phase transition, such as melting or boiling, its specific heat capacity is technically undefined, because the heat goes into changing its state rather than raising its temperature.

The specific heat capacity of a substance, especially a gas, may be significantly higher when it is allowed to expand as it is heated (specific heat capacity at constant pressure) than when it is heated in a closed vessel that prevents expansion (specific heat capacity at constant volume). These two values are usually denoted by c p {\displaystyle c_{p}} and c V {\displaystyle c_{V}} , respectively; their quotient γ = c p / c V {\displaystyle \gamma =c_{p}/c_{V}} is the heat capacity ratio.

The term specific heat may also refer to the ratio between the specific heat capacities of a substance at a given temperature and of a reference substance at a reference temperature, such as water at 15 °C; much in the fashion of specific gravity. Specific heat capacity is also related to other intensive measures of heat capacity with other denominators. If the amount of substance is measured as a number of moles, one gets the molar heat capacity instead, whose SI unit is joule per kelvin per mole, J⋅mol−1⋅K−1. If the amount is taken to be the volume of the sample (as is sometimes done in engineering), one gets the volumetric heat capacity, whose SI unit is joule per kelvin per cubic meter, J⋅m−3⋅K−1.

One of the first scientists to use the concept was Joseph Black, an 18th-century medical doctor and professor of medicine at Glasgow University. He measured the specific heat capacities of many substances, using the term capacity for heat.